Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能。
现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟、Exactly-once保证,而批处理需要支持高吞吐、高效处理。
Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为流处理看待时输入数据流是无界的;批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。
Flink流处理特性:
- 支持高吞吐、低延迟、高性能的流处理
- 支持带有事件时间的窗口(Window)操作
- 支持有状态计算的Exactly-once语义
- 支持高度灵活的窗口(Window)操作,支持基于time、count、session,以及data-driven的窗口操作
- 支持具有Backpressure功能的持续流模型
- 支持基于轻量级分布式快照(Snapshot)实现的容错
- 一个运行时同时支持Batch on Streaming处理和Streaming处理
- Flink在JVM内部实现了自己的内存管理
- 支持迭代计算
- 支持程序自动优化:避免特定情况下Shuffle、排序等昂贵操作,中间结果有必要进行缓存
一、架构
Flink以层级式系统形式组件其软件栈,不同层的栈建立在其下层基础上,并且各层接受程序不同层的抽象形式。
- 运行时层以JobGraph形式接收程序。JobGraph即为一个一般化的并行数据流图(data flow),它拥有任意数量的Task来接收和产生data stream。
- DataStream API和DataSet API都会使用单独编译的处理方式生成JobGraph。DataSet API使用optimizer来决定针对程序的优化方法,而DataStream API则使用stream builder来完成该任务。
- 在执行JobGraph时,Flink提供了多种候选部署方案(如local,remote,YARN等)。
- Flink附随了一些产生DataSet或DataStream API程序的的类库和API:处理逻辑表查询的Table,机器学习的FlinkML,图像处理的Gelly,复杂事件处理的CEP。
二、原理
1.
Flink程序是由Stream和Transformation这两个基本构建块组成,其中Stream是一个中间结果数据,而Transformation是一个操作,它对一个或多个输入Stream进行计算处理,输出一个或多个结果Stream。
Flink程序被执行的时候,它会被映射为Streaming Dataflow。一个Streaming Dataflow是由一组Stream和Transformation Operator组成,它类似于一个DAG图,在启动的时候从一个或多个Source Operator开始,结束于一个或多个Sink Operator。
2. 并行数据流
一个Stream可以被分成多个Stream分区(Stream Partitions),一个Operator可以被分成多个Operator Subtask,每一个Operator Subtask是在不同的线程中独立执行的。一个Operator的并行度,等于Operator Subtask的个数,一个Stream的并行度总是等于生成它的Operator的并行度。
One-to-one模式
比如从Source[1]到map()[1],它保持了Source的分区特性(Partitioning)和分区内元素处理的有序性,也就是说map()[1]的Subtask看到数据流中记录的顺序,与Source[1]中看到的记录顺序是一致的。Redistribution模式
这种模式改变了输入数据流的分区,比如从map()[1]、map()[2]到keyBy()/window()/apply()[1]、keyBy()/window()/apply()[2],上游的Subtask向下游的多个不同的Subtask发送数据,改变了数据流的分区,这与实际应用所选择的Operator有关系。3. 任务、操作符链
Flink分布式执行环境中,会将多个Operator Subtask串起来组成一个Operator Chain,实际上就是一个执行链,每个执行链会在TaskManager上一个独立的线程中执行。
4.
处理Stream中的记录时,记录中通常会包含各种典型的时间字段:
- Event Time:表示事件创建时间
- Ingestion Time:表示事件进入到Flink Dataflow的时间
- Processing Time:表示某个Operator对事件进行处理的本地系统时间
Flink使用WaterMark衡量时间的时间,WaterMark携带时间戳t,并被插入到stream中。
- WaterMark的含义是所有时间t'< t的事件都已经发生。
- 针对乱序的的流,WaterMark至关重要,这样可以允许一些事件到达延迟,而不至于过于影响window窗口的计算。
- 并行数据流中,当Operator有多个输入流时,Operator的event time以最小流event time为准。
5.
Flink支持基于时间窗口操作,也支持基于数据的窗口操作:
窗口分类:
- 按分割标准划分:timeWindow、countWindow
- 按窗口行为划分:Tumbling Window、Sliding Window、自定义窗口
Tumbling/Sliding Time Window
// Stream of (sensorId, carCnt)val vehicleCnts: DataStream[(Int, Int)] = ...val tumblingCnts: DataStream[(Int, Int)] = vehicleCnts // key stream by sensorId .keyBy(0) // tumbling time window of 1 minute length .timeWindow(Time.minutes(1)) // compute sum over carCnt .sum(1) val slidingCnts: DataStream[(Int, Int)] = vehicleCnts .keyBy(0) // sliding time window of 1 minute length and 30 secs trigger interval .timeWindow(Time.minutes(1), Time.seconds(30)) .sum(1)
Tumbling/Sliding Count Window
// Stream of (sensorId, carCnt)val vehicleCnts: DataStream[(Int, Int)] = ...val tumblingCnts: DataStream[(Int, Int)] = vehicleCnts // key stream by sensorId .keyBy(0) // tumbling count window of 100 elements size .countWindow(100) // compute the carCnt sum .sum(1) val slidingCnts: DataStream[(Int, Int)] = vehicleCnts .keyBy(0) // sliding count window of 100 elements size and 10 elements trigger interval .countWindow(100, 10) .sum(1)
自定义窗口
基本操作:
- window:创建自定义窗口
- trigger:自定义触发器
- evictor:自定义evictor
- apply:自定义window function
6.
Barrier机制:
- 出现一个Barrier,在该Barrier之前出现的记录都属于该Barrier对应的Snapshot,在该Barrier之后出现的记录属于下一个Snapshot。
- 来自不同Snapshot多个Barrier可能同时出现在数据流中,也就是说同一个时刻可能并发生成多个Snapshot。
- 当一个中间(Intermediate)Operator接收到一个Barrier后,它会发送Barrier到属于该Barrier的Snapshot的数据流中,等到Sink Operator接收到该Barrier后会向Checkpoint Coordinator确认该Snapshot,直到所有的Sink Operator都确认了该Snapshot,才被认为完成了该Snapshot。
对齐:
当Operator接收到多个输入的数据流时,需要在Snapshot Barrier中对数据流进行排列对齐:
- Operator从一个incoming Stream接收到Snapshot Barrier n,然后暂停处理,直到其它的incoming Stream的Barrier n(否则属于2个Snapshot的记录就混在一起了)到达该Operator
- 接收到Barrier n的Stream被临时搁置,来自这些Stream的记录不会被处理,而是被放在一个Buffer中。
- 一旦最后一个Stream接收到Barrier n,Operator会emit所有暂存在Buffer中的记录,然后向Checkpoint Coordinator发送Snapshot n。
- 继续处理来自多个Stream的记录
基于Stream Aligning操作能够实现Exactly Once语义,但是也会给流处理应用带来延迟,因为为了排列对齐Barrier,会暂时缓存一部分Stream的记录到Buffer中,尤其是在数据流并行度很高的场景下可能更加明显,通常以最迟对齐Barrier的一个Stream为处理Buffer中缓存记录的时刻点。在Flink中,提供了一个开关,选择是否使用Stream Aligning,如果关掉则Exactly Once会变成At least once。
CheckPoint:
Snapshot并不仅仅是对数据流做了一个状态的Checkpoint,它也包含了一个Operator内部所持有的状态,这样才能够在保证在流处理系统失败时能够正确地恢复数据流处理。状态包含两种:- 系统状态:一个Operator进行计算处理的时候需要对数据进行缓冲,所以数据缓冲区的状态是与Operator相关联的。以窗口操作的缓冲区为例,Flink系统会收集或聚合记录数据并放到缓冲区中,直到该缓冲区中的数据被处理完成。
- 一种是用户自定义状态(状态可以通过转换函数进行创建和修改),它可以是函数中的Java对象这样的简单变量,也可以是与函数相关的Key/Value状态。
7. 调度
在JobManager端,会接收到Client提交的JobGraph形式的Flink Job,JobManager会将一个JobGraph转换映射为一个ExecutionGraph,ExecutionGraph是JobGraph的并行表示,也就是实际JobManager调度一个Job在TaskManager上运行的逻辑视图。
物理上进行调度,基于资源的分配与使用的一个例子:
- 左上子图:有2个TaskManager,每个TaskManager有3个Task Slot
- 左下子图:一个Flink Job,逻辑上包含了1个data source、1个MapFunction、1个ReduceFunction,对应一个JobGraph
- 左下子图:用户提交的Flink Job对各个Operator进行的配置——data source的并行度设置为4,MapFunction的并行度也为4,ReduceFunction的并行度为3,在JobManager端对应于ExecutionGraph
- 右上子图:TaskManager 1上,有2个并行的ExecutionVertex组成的DAG图,它们各占用一个Task Slot
- 右下子图:TaskManager 2上,也有2个并行的ExecutionVertex组成的DAG图,它们也各占用一个Task Slot
- 在2个TaskManager上运行的4个Execution是并行执行的
8.
机器学习和图计算应用,都会使用到迭代计算,Flink通过在迭代Operator中定义Step函数来实现迭代算法,这种迭代算法包括Iterate和Delta Iterate两种类型。
Iterate
Iterate Operator是一种简单的迭代形式:每一轮迭代,Step函数的输入或者是输入的整个数据集,或者是上一轮迭代的结果,通过该轮迭代计算出下一轮计算所需要的输入(也称为Next Partial Solution),满足迭代的终止条件后,会输出最终迭代结果。
流程伪代码:
IterationState state = getInitialState();while (!terminationCriterion()) { state = step(state);}setFinalState(state);
Delta Iterate
Delta Iterate Operator实现了增量迭代。
流程伪代码:
IterationState workset = getInitialState();IterationState solution = getInitialSolution();while (!terminationCriterion()) { (delta, workset) = step(workset, solution); solution.update(delta)}setFinalState(solution);
最小值传播:
9.
流处理系统中,当下游Operator处理速度跟不上的情况,如果下游Operator能够将自己处理状态传播给上游Operator,使得上游Operator处理速度慢下来就会缓解上述问题,比如通过告警的方式通知现有流处理系统存在的问题。
Flink Web界面上提供了对运行Job的Backpressure行为的监控,它通过使用Sampling线程对正在运行的Task进行堆栈跟踪采样来实现。
默认情况下,JobManager会每间隔50ms触发对一个Job的每个Task依次进行100次堆栈跟踪调用,过计算得到一个比值,例如,radio=0.01,表示100次中仅有1次方法调用阻塞。Flink目前定义了如下Backpressure状态:
OK: 0 <= Ratio <= 0.10LOW: 0.10 < Ratio <= 0.5HIGH: 0.5 < Ratio <= 1三、库
1.
Flink的Table API实现了使用类SQL进行流和批处理。
详情参考:
2.
Flink的CEP(Complex Event Processing)支持在流中发现复杂的事件模式,快速筛选用户感兴趣的数据。
详情参考:
3.
Gelly是Flink提供的图计算API,提供了简化开发和构建图计算分析应用的接口。
详情参考:
4.
FlinkML是Flink提供的机器学习库,提供了可扩展的机器学习算法、简洁的API和工具简化机器学习系统的开发。
详情参考:
四、部署
当Flink系统启动时,首先启动JobManager和一至多个TaskManager。JobManager负责协调Flink系统,TaskManager则是执行并行程序的worker。当系统以本地形式启动时,一个JobManager和一个TaskManager会启动在同一个JVM中。
当一个程序被提交后,系统会创建一个Client来进行预处理,将程序转变成一个并行数据流的形式,交给JobManager和TaskManager执行。1. 启动测试
编译flink,本地启动。
$ java -versionjava version "1.8.0_111"$ git clone https://github.com/apache/flink.git$ git checkout release-1.1.4 -b release-1.1.4 $ cd flink $ mvn clean package -DskipTests $ cd flink-dist/target/flink-1.1.4-bin/flink-1.1.4 $ ./bin/start-local.sh
编写本地流处理demo。
SocketWindowWordCount.java
public class SocketWindowWordCount { public static void main(String[] args) throws Exception { // the port to connect to final int port; try { final ParameterTool params = ParameterTool.fromArgs(args); port = params.getInt("port"); } catch (Exception e) { System.err.println("No port specified. Please run 'SocketWindowWordCount --port'"); return; } // get the execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // get input data by connecting to the socket DataStream text = env.socketTextStream("localhost", port, "\n"); // parse the data, group it, window it, and aggregate the counts DataStream windowCounts = text .flatMap(new FlatMapFunction () { public void flatMap(String value, Collector out) { for (String word : value.split("\\s")) { out.collect(new WordWithCount(word, 1L)); } } }) .keyBy("word") .timeWindow(Time.seconds(5), Time.seconds(1)) .reduce(new ReduceFunction () { public WordWithCount reduce(WordWithCount a, WordWithCount b) { return new WordWithCount(a.word, a.count + b.count); } }); // print the results with a single thread, rather than in parallel windowCounts.print().setParallelism(1); env.execute("Socket Window WordCount"); } // Data type for words with count public static class WordWithCount { public String word; public long count; public WordWithCount() {} public WordWithCount(String word, long count) { this.word = word; this.count = count; } @Override public String toString() { return word + " : " + count; } } }
pom.xml
org.apache.flink flink-streaming-java_2.10 1.1.4 org.apache.flink flink-java 1.1.4 org.apache.flink flink-clients_2.10 1.1.4
执行mvn构建。
$ mvn clean install$ ls target/flink-demo-1.0-SNAPSHOT.jar
开启9000端口,用于输入数据:
$ nc -l 9000
提交flink任务:
$ ./bin/flink run -c com.demo.florian.WordCount $DEMO_DIR/target/flink-demo-1.0-SNAPSHOT.jar --port 9000
在nc里输入数据后,查看执行结果:
$ tail -f log/flink-*-jobmanager-*.out
查看flink web页面:localhost:8081
2. 代码结构
Flink系统核心可分为多个子项目。分割项目旨在减少开发Flink程序需要的依赖数量,并对测试和开发小组件提供便捷。
Flink当前还包括以下子项目:
- Flink-dist:distribution项目。它定义了如何将编译后的代码、脚本和其他资源整合到最终可用的目录结构中。
- Flink-quick-start:有关quickstart和教程的脚本、maven原型和示例程序
- flink-contrib:一系列有用户开发的早起版本和有用的工具的项目。后期的代码主要由外部贡献者继续维护,被flink-contirb接受的代码的要求低于其他项目的要求。
3. Flink On YARN
Flink在YARN集群上运行时:Flink YARN Client负责与YARN RM通信协商资源请求,Flink JobManager和Flink TaskManager分别申请到Container去运行各自的进程。
YARN AM与Flink JobManager在同一个Container中,这样AM可以知道Flink JobManager的地址,从而AM可以申请Container去启动Flink TaskManager。待Flink成功运行在YARN集群上,Flink YARN Client就可以提交Flink Job到Flink JobManager,并进行后续的映射、调度和计算处理。
- 设置Hadoop环境变量
$ export HADOOP_CONF_DIR=/etc/hadoop/conf
- 以集群模式提交任务,每次都会新建flink集群
$ ./bin/flink run -m yarn-cluster -c com.demo.florian.WordCount $DEMO_DIR/target/flink-demo-1.0-SNAPSHOT.jar
- 启动共享flink集群,提交任务
$ ./bin/yarn-session.sh -n 4 -jm 1024 -tm 4096 -d$ ./bin/flink run -c com.demo.florian.WordCount $DEMO_DIR/target/flink-demo-1.0.SNAPSHOT.jar